
Development and Enhancement of a Stemmer for the
Greek Language

Georgios Ntais

European Dynamics SA
209, Kifissias av.

15124 Athens, Greece
+30 210 8094500

georgios.ntais@eurodyn.co
m

Spyridon Saroukos
School of Information

Sciences, University of
Tampere

Kanslerinrinne 1, Pinni B
Tampere FI-33014, Finland

spyretto@gmail.com

Eleni Berki
School of Information

Sciences, University of
Tampere,

Kanslerinrinne 1, Pinni B
Tampere FI-33014, Finland

+358 40 190 42 96
eleni.berki@uta.fi

Hercules Dalianis
DSV/Stockholm University

P.O. Box 7003,
164 07 Kista,

Sweden
+46 8 674 75 47

hercules@dsv.su.se

ABSTRACT

Although there are three stemmers published for the Greek

language, only the one presented in this paper and called Ntais’

stemmer is freely open and available, together with its

enhancements and extensions according to Saroukos’ algorithm.

The primary algorithm (Ntais’ algorithm) uses only capital letters

and works with better performance than other past stemming

algorithms for the Greek language, giving 92.1 percent correct

results. Further extensions of the proposed stemming system (e.g.

from capital to small letters) and more evaluation methods are

presented according to a new and improved algorithm, Saroukos’

algorithm. Stemmer performance metrics are further used for

evaluating the existing stemming system and algorithm and show

how its accuracy and completeness are enhanced. The

improvements were possible by providing an alternative

implementation in the programming language PHP, which offers

more syntactical rules and exceptions. The two versions of the

stemming algorithm are tested and compared.

Categories and Subject Descriptors

H.3 INFORMATION STORAGE AND RETRIEVAL. H.3.1

[Content Analysis and Indexing]: Linguistic processing H.3.3

[Information Search and Retrieval]: Clustering,

Information filtering, Search process, Selection process.

General Terms

Algorithms, Measurement, Documentation, Performance, Design,

Experimentation, Languages, Theory.

Keywords

Stemming algorithm, stemmer metrics, Greek language,

performance evaluation metrics, Natural Language Processing

(NLP), Information Retrieval (IR).

1. INTRODUCTION
Stemming algorithms are used in the fields of Information

Retrieval (IR) [1, 2, 3] in general and Natural Language

Processing (NLP) [4, 5, 6] to improve precision and recall. We

present the construction and evaluation of a stemming system and

algorithm for the Greek language according to the Modern Greek

grammar [7]. Overall, an accurate Greek stemmer can be used for

various purposes in IR and Morphological Analysis. This

stemming system can help to obtain more and ‘better hit’ results

during searching and retrieving information. According to

research and measurements about Greek language stemming, a

Greek stemmer on the Web will provide more specific search

results [8]. We also provide a library version of the algorithm

written in PHP. By implementing a PHP algorithm, our aim has

been to provide a stemmer that can directly be used by the engine

of any web application, for any kind of web search or linguistics.

Other programming languages such as Javascript or even the more

powerful like C and C++ lack this ability [9, 10]. This work,

which is available under an Open Source licence, will lead to a

more powerful, more complete and more consistent Greek

stemmer that can directly be used and modified by others.

We first provide a summary of the Ntais’ stemming algorithm

[11]. Next we introduce some stemmer performance metrics that

will be used during our evaluation in order to compare the output

of our original stemmer and its modified version. The design of

the existing algorithm and its extensive list of rules are provided

through references to online material with free access [11]. We

describe the improvements incorporated in the re-designed

algorithm along with the new set of rules and exception lists. A

detailed account of these can also be found in [12].

2. BACKGROUND RESEARCH
There exist some stemming methods for Greek texts, presented

since the mid-90s. These methods are parts of more extended

work about morphological analysis and information retrieval from

various texts and cannot be considered as rule-based stemmers.

Considering past research on Greek language stemming [8, 13,

14], researchers agree that specific grammatical rules can improve

the effectiveness on information retrieval from Greek texts. We

formulated the following research questions:

RQ1: Which specific grammatical/syntactical rules could

comprise a stemming algorithm that will lead to the development

of an effective Greek stemmer?

RQ2: Up to which point the addition of more

grammatical/syntactical rules and exceptions improves the

precision of the stemming algorithm used in the Greek stemmer?

The resulted initial stemming algorithm is herein implemented

using JavaScript language as a web based application and works

through a simple web-site [15], as well as its successor [16].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

PCI '16, November 10-12, 2016, Patras, Greece

© 2016 ACM. ISBN 978-1-4503-4789-1/16/11…$15.00

DOI: http://dx.doi.org/10.1145/3003733.3003775

https://webmail1.uta.fi/horde/imp/dynamic.php?page=mailbox
https://webmail1.uta.fi/horde/imp/dynamic.php?page=mailbox
mailto:spyretto@gmail.com
mailto:eleni.berki@uta.fi
mailto:hercules@dsv.su.se
callto:+1503-4789
http://dx.doi.org/10.1145/3003733.3003775

3. DESIGN AND ENHANCEMENT

3.1 Towards Ntais’ Stemming Algorithm
For the design of the Greek stemmer we followed the Porter’s

algorithm [17] as the literature review on stemmer technology

(Table 1) revealed that Porter’s algorithm was probably the most

reliable one. That algorithm was developed for the English

language. The Greek stemmer structure follows the simplicity and

the directness of Porter’s rules. Figure 1 illustrates the generic

overview and straightforward structure of our approach.

Figure 1. Stemming Approach

The research and decision about this was also based on the

previous work about Greek stemming and its effectiveness. The

development tool was JavaScript, an open-source script language,

freely available on the Web. For the evaluation of the stemmer we

used the Greek keyword dictionary, kindly provided by the

National Centre of Scientific Research “DEMOCRITOS” [18]

and a random word corpus.

First, for the sake of simplicity, we only used capital letters as past

research [8, 13] indicated that it would be very difficult to try to

solve the problem of the “moving” tone-mark on the stems of the

Greek words. Besides the general prefixes, there are some cases of

allomorphy in the Greek language. The verbs starting with

consonant, take the letter “ε” as prefix on the past tenses [7]. In

these tenses the stem changes formation as well and this is why

there are two stems for every verb. Therefore, we uphold this

distinction and we accept that a verb has a different stem in the

past tenses from the other tenses. Table 1 provides a summary of

the overall information and comparison on stemming technology.

Table 1. Stemming Algorithms – Summarised Information

Author

(year)

Language/Web

Availability

Execution

Steps

Weaknesses &

Limitations

Lovins

(1968)

[19]

EN / Yes 2 Aggressive with

short stems and

words

Porter

(1980)

[17]

EN / Yes 5 Quite aggressive

and produces over-

stemming [20]

TZK

(1995)

[8]

GR / No 2 Does not handle all

suffixes

AMP

(2001)

[14]

GR / No 4 Unable to handle

compound words

Ntais

(2006)

[11]

GR / Yes 29 Outperforms TZK

and AMP [11]. New

and untested;

handles capital

letters; under-

stemming errors[12]

CST

(2009)

[6]

GR and others /

No

Prefix/

Infix/Suffix

Relatively new; no

criticisms so far

3.2 Towards Saroukos’ Stemming Algorithm
One of the aims of this work was to test the original stemmer in

combination with a search engine, and Google's search engine was

a candidate. A web interface that would feed Google with

modified, stemmed queries and unmodified ones could easily be

built. The results of both modified and unmodified queries could

then be compared. Unfortunately the application of a stemmer in a

web search engine was beyond the time limitations of this project.

It was also unclear whether Google is already utilizing any kind of

stemming techniques for Greek. In a previous web search engine

evaluation [4], it was pointed out that Google returns a different

number of results for different variations of the word “Athens”

(Αθήνα: Athens, Αθήνας: of Athens, Αθηνών: of (the city of)

Athens). The difference in results can only imply that no

stemming is used. Despite that, there are reports e.g. from Google

in 2003 [21] that some form of stemming is being conducted

although it is unclear how extensively. In addition, Paice [22]

suggests that evaluating a stemmer solely in terms of IR is

incomplete since IR is only one field that stemming can be

applied and “...gives no insight into the specific causes of errors”.

In order to evaluate both Ntais' algorithm and its revised

stemming algorithm, we executed both in batch mode against a

collection of more than half a million Greek words. Both

algorithms stemmed the input words from the text, and formed

groups of words that had the same stem. The reader can peruse

some of these execution step tests in [12].

3.3 Alternative Stemmer Designs and Using

Stemmer Performance Metrics
Before proceeding to this work we examined alternative stemmer

techniques, e.g. computational process metamodelling and formal

language theory [23, 24] and other for redesign, which were

rejected mainly because of their application domain

incompatibility. A detailed account of the reasons for rejection

can be found in [12]. For this decision we additionally re-

considered the summarized information behind each and every

stemming approach available in Table 1. In order to evaluate the

existing stemmer and measure its effectiveness, we used the

Frake’s Metrics [25] for stemmer strength and Error metrics [26].

Since the strength of a stemmer can affect the precision and recall

in queries, Frakes defines a set of metrics that help to compare

algorithms by having the algorithms stem the same texts and

compare the results of the following metrics: i) The mean number

of words per conflation class; ii) index compression factor; iii) the

number of words and stems that differ, and iv) the median and

mean modified Hamming distance. There are two clearly distinct

error metrics categories concerning stemmers, under-stemming

and over-stemming. [12, 25, 26].

One other approach to stemming is to use lemmatization that

means to remove the inflection, (suffix) and create the base or

normal form of the word the so called lemma. This has been

carried out for Greek, among other languages, including both

prefix, (infix for some languages), and suffix removal for Greek

obtaining 90% accuracy. The lemmatization algorithm has been

trained on examples. [6]. Other approaches to text stemming

regarding performance and other challenges in Greek and other

languages can be found in [27, 28, 29].

4. PERFORMANCE AND IMPROVEMENT

4.1 Evaluation of Ntais' Algorithm
We first ported the algorithm in PHP. We implemented a set of

helper applications that will be using directly the algorithm and

will keep statistics about the returned stems. The operating system

used for the evaluation was Gentoo Linux but because of the

portability of PHP and our style of coding the source code is

portable and can be used in any platform that PHP is ported to.

Our evaluation commenced by executing our port of Ntais'

stemmer against a list of Greek words. We set the application in a

manner that words with common stems would be grouped into

conflation classes and then the output be would be directed to a

text file. This text file was examined manually for under-

stemming and over-stemming errors. We used modified Hamming

Distances in order to find similar stems. We concluded that two

stems with a modified Hamming Distance of four or less can be

possibly merged into one, indicating an under-stemming or over-

stemming error of the stemmer that generated them.

4.2 New Features and Properties

4.2.1 The Introduction of Stop-Word Elimination
Stop-word removal is one of the most commonly used techniques

in IR [1, 2, 3, 4]. We use stop-word elimination in order to

improve the performance of the stemming algorithm. The stop-

word list mainly contains words of length of at most four letters.

In our modified algorithm, stop-word elimination is the first step

of execution, a step that not only produces better results but also

improves the running time of the algorithm. The initial algorithm

had solved this problem by processing only words of 4 letters or

more. Although this approach left just a few words of 3 that could

be stemmed unprocessed, we decided to add a stop-word list of

more than 500 words, in order to increase precision.

4.2.2 The Addition of More Grammatical Rules
We created a set of helper applications that directly use our

implementations of both Ntais' and our modified algorithm. One

of these applications uses as input a list of words and creates

conflation classes according to the stems returned by the

stemmers. These classes were manually checked for over-

stemming and under-stemming errors in a manner similar to

previous literature [11, 26]. According to the results, more

suffixes were added in order to deal with under-stemming. As

pointed out in [11], the introduction of more rules for additional

suffixes raises stemming errors due to over-stemming. In dealing

with this, we added more exceptions in order to deal with over-

stemming and keep precision at an acceptable level.

4.2.3 The Introduction of Lower Case Letters
The initial stemming algorithm of Ntais only accepts as input

words in upper case letters, as mentioned in earlier sections and in

[11]. Our improved algorithm, Saroukos’ algorithm [12] is

capable of handling words given in any case, upper, lower or

combinations of both. The main body of the algorithm remains

unchanged and all rules are still in capital letters. Before returning

the stem of the given word, a final alteration of the stem occurs as

the algorithm consults the case of each letter on the stem, and

alters the case of a letter if needed. In our implementation the

problem of the “moving” tone-mark still remains [8, 11, 12, 13],

but we decided to treat both upper case and lower case words.

4.3 The Final Saroukos’ Algorithm
After careful examination of the output of the original stemmer,

we tried to incorporate as many modifications as possible.

However, an addition of a rule that corrects some errors may

create other errors, unless an appropriate exception list is also

created. Nevertheless, we added more rules in order to correct

wrong patterns that kept appearing in the output. One striking

example was the omission of any rules for suffixes that appear in

Past Continuous (ΙΖΑ, ΙΖΕΣ, ΙΖΕ, ΙΖΑΜΕ, ΙΖΑΤΕ, ΙΖΑΝ) and

past tenses in general. This detailed work appears in [12, Table 8].

5. FINAL ALGORITHM’S EVALUATION
After the improvement modifications of Ntais’ algorithm [11], we

evaluated the revised algorithm, Saroukos’ algorithm [12]. We

used the same word list and the same applications we created for

testing the initial Ntais’ algorithm. We made sure that the

statistics produced can be comparable. Although the two

stemmers leave unchanged roughly the same number of words,

our modified version produces fewer and bigger conflation classes

by altering more letters in every word, on average. Table 2

presents summary statistics gathered after executing both Ntais’

and Saroukos’ algorithms against a list of 574,621 Greek words.

Table 2. Comparison of the Original and Revised Algorithms

Original

(Ntais)

Revised

(Saroukos)

Mean number of words per

conflation class
4.055 5.664

Index compression factor 75.34% 82.34%

Ratio of unchanged to total words 2% 2%

Mean modified Humming Distance 2.441 2.916

Median Modified Humming

Distance
2 2

Correct Stems (sample of 12468

words)

10.885

(87.3%)

11.669

(93.52%)

Distribution of Stemming errors per algorithm

Understemming Errors 88.44% 23.67%

Overstemming Errors 11.56% 76.33%

Number of different stems

generated by the two stemmers

(sample of 574.621 words)

35.885

(6.24%)

The majority of the errors of the initial algorithm had to do with

under-stemming (88.44%). The new algorithm produces more

over-stemming errors (76.33%) despite the fact that the total

number of errors is reduced. The two stemmers produced 35,885

different stems for the same list of words. The number of

execution steps was increased from 29 in the original algorithm of

Ntais to 42 in Saroukos’ algorithm. 10 of the new execution steps

have to do with the 72 newly added stems, while the remaining 3

deal with stop-word removal and lower to upper and upper to

lower case treatment. Although the number of the steps was

increased by approximately 44%, the new algorithm by Saroukos

now executes 23.17 steps on average. The reason is that while the

original algorithm always executes all of its 29 steps, the modified

algorithm returns the correct stem and then exits earlier if the

remaining rules are not going to modify the word any further.

6. CONCLUSIONS AND FUTURE
We gradually constructed and incrementally tested and improved

the only Greek language stemmer currently available and open to

everyone. Our new and improved stemming algorithm returns

more correct results than its predecessor. The under-stemming and

over-stemming errors are less. The new algorithm is more

complete since it supports most of the grammatical tenses and

stems correctly suffixes (like diminutives and other) not included

before. Due to the PHP implementation language, our

implementation can be used by any web or non web application

for stemming of Greek words. Adding more suffixes is attainable

but the effort required for each additional suffix increases

geometrically. The initial algorithm already deals with the

majority of suffixes found in the Greek grammar. Our latest

algorithm, like its predecessor, is not dealing with the moving

tone-mark issue. The stemmer can be enhanced by adding more

suffixes and exceptions. In addition to the 158 suffixes of the

initial algorithm, we added rules for 72 more.

7. REFERENCES
[1] Baeza-Yates, R. and Ribeiro-Neto, B. 1999. Modern

Information Retrieval. Addison Wesley, New York.

[2] van Rijsbergen, C.J. 1979. Information Retrieval

Butterworths, London.

[3] Risvik, K. M, Mikolajewski T. and Boros P. Q. 2003

Segmentation for Web Search. In Proceedings of the 12th

International World Wide Web Conference, 52.

[4] Lazarinis, F. 2005. Do search engines understand Greek or

users requests “sound Greek” to them ? In: M. Beigbeder and

W.G. Yee (eds) Open Source Web Information Retrieval

Workshop in conjunction with IEEE/WIC/ACM

International Conference on Web Intelligence & Intelligent

Agent Technology. Compiegne, France, 19 Sep. 43-6.

[5] Lazarinis, F. 2007. Lemmatization and stopword elimination

in Greek web searching. Proceedings of the 2007 Euro

American Conference on Telematics and information

Systems EATIS '07, ACM, New York, NY.

[6] Jongejan, B. and Dalianis, H. 2009. Automatic training of

lemmatization rules that handle morphological changes in

pre-, in- and suffixes alike. Proceeding of the ACL-2009,

Joint conference of the 47th Annual Meeting of the

Association for Computational Linguistics and the 4th

International Joint Conference on NLP of the Asian

Federation of NLP, Singapore, pp. 145-153.

[7] Triantafyllidis, M. 1941. Modern Greek Grammar. Institute

of M Triantalyllidis, Greece.

[8] Kalamboukis T. Z. and Nikolaidis, S. (1995): Suffix

stripping with Modern Greek Program, 29, pp. 313-321

[9] Lerdorf, R & Tatroe, K. 2002. Programming PHP. O'Reilly,

Sebastopol, CA.

[10] Flanagan D. 2004. Javascript: The Definitive Guide. O'Reilly,

Sebastopol, CA.

[11] Ntais, G. 2006. MSc Thesis. Development of a stemmer for

the Greek language. MSc Thesis at Stockholm University /

Royal Institute of Technology.

(https://people.dsv.su.se/~hercules/papers/Ntais_greek_stem

mer_thesis_final.pdf).

[12] Saroukos, S. 2008. Enhancing a Greek Language Stemmer

Efficiency and Accuracy Improvements MSc Thesis,

University of Tampere. (http://uta32-

kk.lib.helsinki.fi/bitstream/handle/10024/80480/gradu03463.

pdf?sequence=1).

[13] Kalamboukis T. Z. and Nikolaidis S. 1999. Αn Evaluation of

Stemming Algorithms with Modern Greek. Proceedings of

the 7th Hellenic Conference on Informatics, pp. 61- 70.

[14] Tambouratzis, G. and Carayannis, G. (2001): Automatic

Corpora-based Stemming in Greek. Literary and Linguistic

Computing, Vol. 16, No. 4.

[15] Ntais, G. 2008. Online Greek Stemmer. Web Interface

implemented in Javascript. (Last Retrieved: 14/05/2016).
http://people.dsv.su.se/~hercules/greek_stemmer.gr.html

[16] Saroukos, S. 2010. Online Greek Stemmer. Web Interface

implemented in PHP. (http://saroukos.com/stemmer/)

[17] Porter, M. 1980. An algorithm for suffix stripping. Program,

14(3), 130-137.

[18] Petasis, G., Karkaletsis, V., Farmakiotou, D.,

Androutsopoulos, I. and Spyropoulos, C.D. 2003. A Greek

Morphological Lexicon and its Exploitation by NLP

Applications. LNCS, vol.2563, Eds: Y. Manolopoulos et al.

Advances in Informatics - Post-proceedings of the 8th

Panhellenic Conference in Informatics, pp. 401-419.

[19] Lovins, JB. 1968. Development of a stemming algorithm.

Mechanical Translation & Comp. Linguistics, 11, 1. 22-31.

[20] Carlberger, J., Dalianis, H., Hassel, M. & Knutsson, O. 2001.

Improving Precision in Information Retrieval for Swedish

using Stemming. In Proc. of NODALIDA 01-13th Nordic

Conf. on Computational Linguistics, May 21-22, Uppsala.

[21] [Google, 2003] Google Starts Auto Stemming Searches.

http://www.searchengineshowdown.com/blog/2003/11/googl

e_starts_auto_stemming_se.sh (Retrieved 04/05/2008).

[22] Paice, D. C. 1994. An Evaluation Method for Stemming

Algorithms. In Proceedings of the 17th Annual International

ACM SIGIR Conference on Research and Development in

Information Retrieval, 42-50.

[23] Berki, E. 2001. Establishing a scientific discipline for

capturing the entropy of systems process models: CDM-

FILTERS - A Computational and Dynamic Metamodel as a

Flexible and Integrated Language for the Testing,

Expression and Re-engineering of Systems. Ph.D. Thesis,

University of North London.

[24] Lewis, R. H. and Papadimitriou, H. C. 1998. Elements of the

Theory of Computation. Prentice Hall, Upper Saddle River.

[25] Frakes W. B. 2003. Strength and Similarity of Affix Removal

Stemming Algorithms. ACM SIGIR Forum, 37, 1 26 – 30.

[26] Alvares, R. V, Garcia, A. C. B. and Inhaúma, F. 2005.

STEMBR: A Stemming Algorithm for the Brazilian

Portuguese Language. Proc. of the12th Portuguese Conf on

Artificial Intelligence, EPIA 2005, LNAI 3808, 693-701.

[27] Adam, G., Asimakis, K., Bouras, C. and Poulopoulos, V.

2010. An efficient mechanism for stemming and tagging: the

case of Greek language. In: Proceedings of the 14th

international conference on knowledge-based and intelligent

information and engineering systems, pp 389–397.

[28] Singh, J. and Vishal, G. 2016. Text Stemming: Approaches,

Applications, and Challenges. ACM Comput. Surveys. 49(3).

[29] Moral, C., de Antonio, A., Imbert, R. & Ramírez, J. 2014. A

survey of stemming algorithms in information retrieval/

Information Research, 19(1).

https://people.dsv.su.se/~hercules/papers/Ntais_greek_stemmer_thesis_final.pdf
https://people.dsv.su.se/~hercules/papers/Ntais_greek_stemmer_thesis_final.pdf

